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The alignment of human erythrocytes in aqueous suspensions in
the magnetic field B, (called the z-direction) of an NMR spectrom-
eter was shown by calculating the diffusion tensor for water in the
sample. The diffusion was measured using a pulsed-field-gradient
spin-echo NMR method. The extent of diffusion anisotropy for
water was exemplified by the values of the apparent diffusion
coefficients with erythrocytes of normal shape and volume: for a
typical experiment the values for the x-, y-, and z-directions were
(6.88 £ 0.17) x 107", (7.07 £ 0.17) x 107", and (10.20 = 0.17) X
107 m? s7*, respectively. Cells in hypo- and hyperosmotic media
were also studied and they too showed the anisotropy of the
apparent diffusion coefficients but the extents were different. A
new method of data analysis was developed using the Standard
Add-On Packages in a Mathematica program. The experimental
findings support evidence of erythrocyte alignment that was pre-
viously obtained with a high-field-gradient g-space method. © 2000
Academic Press

Key Words: cell alignment; PGSE NMR; water diffusion; mul-
tivariate analysis; erythrocytes; magnetic field effect on cells.

INTRODUCTION

relatively weak magnetic field gradients that are of the order «
5to 50 mT m* (e.g.,6, 8, 10.

Thus, we set out to determine whether diffusion tensc
analysis would provide corroborating evidence of erythrocyt
alignment in B, using the alternative technology and date
processing procedures of diffusion tensor analy4j5).

Because biological tissues are ordered on the microscoy
scale the diffusion of solutes and water in them is often seen
be anisotropic4, 5. However, this is not an obvious state for
cells in a suspension except if they are not spherically syn
metrical and experience an aligning force; this situation pe
tains to the human erythrocyte.

Tissue anisotropy can be expressed in terms of & 3
matrix of diffusion coefficients, or a rank two tensd).(The
elements of this tensor determined in contemporary MRI ir
vestigations are interpreted in terms of the locally ordere
orientation of (semi-)impermeable barriers. Thus the locatio
of axon-fiber tracts can be determined in MRI scans of th
brain Q).

Previous explanations of the method for determining th
values of the elements of the diffusion tensbr+10 seemed to
us to be unduly complicated; this is especially true now the

NMR-based evidence that biconcave-shape human erythseveral well-known computer software packages contain tt

cytes in suspension in an aqueous medium become alignedeiguisite multivariate regression algorithms and matrix-diagc
the magnetic field, of an NMR spectrometer is surprisinglynalization procedures as standard routinesMathematica
recent. It was provided by the observation of coherence pedks) the functions Regress, NonLinearRegress, and Singule
in g-space plots obtained from erythrocytes that were studi¥@lues perform the essential roles, thus making the impleme
with pulsed-field-gradient spin-echo (PGSE) NMR spectrotation of diffusion tensor analysis facile.

copy (1). A simple mathematical relationship exists between Before presenting the experimental results that were an
the position of the minima in thesg-space plots and the lyzed using a program written Mathematicait is pertinent to
average main diameter of the cells that are aligned with thgive some background theory so that the alternative analytic
disc-like faces parallel t®, (2, 3. The experiments require approach can be set in its correct context.

access to a sample probe that generates very large magnetic

field gradients, of the order of 2 to 10 T m and these are not

common. Also, the probes usually generate a gradient in only

one coordinate direction, parallel B), (i.e., az-only grgdient The PGSE Experiment
probe). On the other hand, there is much current interest in

diffusion tensor analysis for characterizing the orientation of Consider a PGSE experiment conducted on a sample whi
microstructures in tissues vivo during magnetic resonanceis isotropic and in which the diffusion is unbounded. Take
imaging (MRI) @-9. The gradient coils for whole body coordinate system with theaxis in the direction of the polar-
imaging, and their high-resolution NMR counterparts, generatng field and letk be the unit vector in this direction so that
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B, = By k. In this experiment the signal characteristics amescribe the diffusion behavior in all directions. The mathe
determined by the gradients imposed on the component of thatical form ofD is a second-rank tensBrwith nine elements
magnetic field in the direction dB,. Let this component be as is defined here (but it is explained further below):

B(X, Y, z, t). Inits simplest implementation the field-gradient

pulses are along only one axis, usually thaxis so thaB(x, D,, Dy, Dis
Y, z,t) = B(z, t). The pulses produce a uniform field-gradient D=|Dy D, Dyl. 3]
dB/dz = g,(t) so thatB(z, t) = B, + g,(t)z. The field- Ds; Ds, Das

gradient pulse is modulated in time, thus it can be written quite
generally ag,(t) = g.np(t), whereg, , is the maximum value \;o4em triple-axis NMR gradient probes enable the applice
of the field gradient achieved during the pulse @t is @ {jon of any combination of field-gradient pulses along thre:
profile factor. For a rectangular pulsp(t) = 1 during the cgtesian axes. Thus the directions along which independe
pulse 0= t = 5, andp(t) = O outside the time of the pulse.gragient pulses can be applied are the y-, and z-axes,
The ratio of the NMR signal intensity obtained with ggpresented by the unit vectdrg, andk, respectively. A pulse
nonzero field-gradient, relative to that obtained when it is zergyocted along the-axis will produce a uniform field gradient
is referred to as the attenuation. The natural logarithm of thg/qx = g.(t) and a pulse along thg-axis will produce a
attenuation is denoted Hy (4, 12): uniform field gradiendB/dy = g,(t); the case fog,(t) was
discussed above.

Sg] 2p2py2
R= In( = —vP9.mD, (1] pulsed-Field-Gradient Vectors

0]
Pulses which are applied simultaneously along all three ax

wherey is the magnetogyric ratio of the detected nucléd$s produce a combined field-gradient which is the vector sum «
the diffusion coefficient of the spin-bearing molecules, 8id the three separate components:

is a function of the shape profile of the pulses:
B, 0B B

TE2 t 2 g=-_1+ j+--k
J d d
P2=J J p(t")dt’ | dt X oyr ooz
0 0 = gx(t)l + gy(t)] + gz(t)kv [4]

because the field now varies in all three directions, Be=
B(X, y, 2). If the pulse profilep(t) is the same in all three

. . _ directions, we write
where TE is the spin-echo time. For rectangular pulses, each of

durationd and separated from each other by an intervah of
P? = 8*A — &/3) [12.

The value oD is the negative of the slope of the line that i
regressed onto the data paits(R,), i = 1, ...,N, where
b? = y*8%(A — 8/3)gZ,; and is referred to as the Stejskal
Tanner parametell®), andN is the number of differeng, .,
values used in the experiment, with a fixed pulse shape.

2
TE t TE/2 . . . . . .
+J [J p(t)dt’ — ZJ p(t’)dt’] dt. (2] where ordinary derivatives are replaced by partial derivative
2 0 0

TE/

9= P (GO + Gym(D)] + Gom(DK). [5]

Srhe vector g. is a constant whose magnitudgy,.| =

_\/gf,m(t) + g2.(t) + gZu(t) is the maximum field-gradient

achieved during the pulse and whose direction, represented

the unit vectorg,, = d./||g., is the direction of the pulse.
Generalizing Eq. [1] yields

Requirement for a Diffusion Tensor

When the sample has barriers such as cell membranes, R= In(z[[%a]) = —y?P?g.|?D*®, [6]
which are semi-permeable to the diffusant, the apparent (mea-

sured) diffusion coefficient is less than that for free diffusion o . . . o
(e.g., 1-5. The value ofR (Eq. [1]) varies inversely as ayvhereT the apparent diffusion coefficient in the directiorggf
function of the separation distance between the restrictifydefined to be

boundaries. Thus for a sample such as a section of brain tissue,

where there are bundles of axonal fibers, the apparent diffusion D®= 9rD0nm, (7]
coefficient of water depends on the orientation of the fibers

relative to the direction of the magnetic field-gradient pulseshere the superscript t denotes the transpose of the matr
The dependence & on direction require® to be treated not The apparent diffusion coefficient is thus estimated from th
as a single scalar quantity but as an array of values that vahkperimental measurements by evaluating the following:
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R, R,
(8] Z

=]
=
.

C =y PAlgnll? T cFlgmil®?

for differentg,, values.

The Quadratic Form

On physical grounds, the diffusion tensor is expected to be
symmetrical, i.e., the diffusion in any given direction is the
same if the field-gradient is reversed. In this cBsge = D,,,

D;; = Dy, andDj, = D,;. The presence of nonzero off-
diagonal elements implies that there are impediments to diffu-
sional motion that are not aligned exactly with the axes chosen
for the coordinate system of the laboratory.

The apparent diffusion coefficient, after expansion of the
vector—-matrix—vector product in Eq. [7], is given by

D®= gDy, + gD, + §2Dss + 24,8,D 1,
+ nggzDB + ZgygzDB- [9]

Thi . is k th dratic f b FIG. 1. Diffusion-tensor ellipsoid. The representation of diffusion anisot-
IS expression IS known as the quadratic form because mﬁy is achieved by assigning values to the three semi-axis lengths of t

components ofj; occur only in products of degree twa3).  ejiipsoid that are in the ratio of the apparent diffusion coefficients inthg-,
Thus, the statistical challenge is to estimate the coefficientsanfi z-directions in the frame of reference of the sample. The laborator

this quadratic form from the experimental da for the reference frame is represented as the solid lines, and the arrow denotes
various giveng- arbitrary pulsed-field-gradient vector that arises from a linear combination ¢
i-

. . . . - . the basis gradient vectogs, g,, andg,.
The variation in the apparent diffusion coefficient in the g & 9 g

sample can be represented graphically by an ellipsoid, as in

Fig. 1. The direction along which diffusion is measured igates of the elements @ because of the logarithmic trans-
experimentally controlled by the appropriate choice of a corfermation of the original data. However, this bias can b
bination of gradients in the three directions, to produce abviated, to a large degree, by using nonlinear regression of t
gradient in the direction oj,,. The vector in Fig. 1 is drawn exponential counterpart of Eq. [1] onto the untransformed dat
in this direction; its tail is located at the origin and its pointn the present study little difference was found between th
touches the inner surface of the ellipsoid. The lengthr of estimates ofD; and their uncertainties, obtained with either
corresponds to the magnitude of the apparent diffusion coeffiethod (data not shown). Therefore, because of its grea

cient in the direction of the vector. simplicity and the ease of detecting aberrant data fror
_ _ Stejskal-Tanner plots, which ideally are straight lines, th
Regression Analysis linear regression approach was used thereafter.

Since the values of Six independent _elements of the_ d|ﬁu§|g|pam e Rotation
tensor are to be determined, at least six different gradient direc-
tions must be used in the experiment. In addition, since Bgch  The nature of the apparent diffusion anisotropy is encaps
value was determined in the present experiments from 7, 8, orlagd inD which refers to a Cartesian coordinate system the
different values of each of the (at least) six field gradient direbas axes that are not necessarily aligned with those of the tht
tions the fitting of the parameters constitutes a typical examplegsdient basis vectors. Therefore, the rotations that are requi
multivariate regression analysi$4 19. Fitting the elements of to bring about the transformation of the experimental frame ¢
the diffusion tensor (Eq. [7]) involves regression of Eq. [9] ontteference to that of the sample are achieved with the Eul
data quadruples that are composed of the three gradient maggfiation matrix. This matrixE, rotates a Cartesian coordinate
tudes and the natural logarithm of the signal intensity, transformgystem through the angle ¢, and ¢ with respect to the
according to the right-hand sides of Eq. [8], to gi#. The originalx-, y-, andz-axes of the laboratory frame (specified by
Mathematicafunction Regress performs the required analysibe gradient coils). Thus, the transformation of the elements
using the set of fitting functionsd, @7, 8-, 26,0, 20.0., 20,0} @ vectory to give the values in the new coordinate systgm,
that are consistent with the form of Eq. [9]. The output of this described by
analysis includes the 3 3 diffusion tensoD (see Results).

Statistical bias is expected to be introduced into the esti- y’' = Ey. [10]
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Because the diffusion equation (Fick’s first law) specifieslay using theMathematicaunction SingularValues. The values

linear system of vectors it has the general form of the rotation angle®, ¢, andys were obtained by using the
expressions for the coefficients of the Euler matrix [using th
y = Dx, [11] y-convention of {3); Eqg. [15]] and equating them with the

corresponding elements in the experimentally determined or

COoS¢ cosh cosy — sing sinygs  sin¢g cosh cosy — cosd sinyg —sin 6 cosy
E =| —Cos¢coshsinyg — sing cosyy —sin¢g cosh sinys + cosd cosy sinfsiny |, [15]
sin 6 cos ¢ sin 6 sin ¢ cos6

whereD denotes the experimentally determined diffusion tensdrhe natural coordinate system thus formed is the set of pril

Under the Euler transformation, Eq. [11] becomes cipal axes of the ellipsoid and the three elements of the dia
onal of D" are the lengths of the semi-axes in the direction ¢
y' =D’'x’, [12] the three principal axes, such as that drawn in Fig. 1.
wherey’ is given by Eq. [10] an&’ = Ex. Hence, EXPERIMENTAL
Ey = D'EX, [13a] Erythrocytes. Blood was obtained by venipuncture from
the median-cubital vein of the donor (PWK). The cells were
or washed twice by centrifugation (309&t 4°C) in 4 vol of
physiological saline (NaCl, 0.9% wi/v) containing 10 mM glu-
y = E"'D’Ex. [13b] cose. After the second wash the cell suspension was gas:

with CO to convert the hemoglobin to the diamagnetically
stable form that is optimal for NMR studies of these cells [e.g

Thus, (1)]. To swell the cells, some of the cell pellet was suspende
D= E-ID'E [143] in 4 vol of 121 mM NaCL containing 10 mM glucose, while to
' shrink the cells, to be more like a flat disc, they were suspend
in 242 mM NacCl also containing 10 mM glucose. The sus
or

pended cells were then sedimented by centrifugation as befo

All cell samples were suspended to give a final hematocrit «
D' =EDE " [14b] ~0.65; this value was chosen because it provided a relative

large extracellular space without allowing significant settling
This is a similarity transform. When E is a rotation matrix, it®f the cells during the time of the experiment.

inverse is equal to its transpose, so NMR samples. A total of 0.5 mL of the erythrocyte sus-
pension was placed in 5-mm-od glass NMR tubes (507-P
D=ED'E, [14c] wilmad, Buena, NJ).
NMR spectrometer. The experiments were conducted on ¢
or Bruker DRX-400 spectrometer (Karlsruhe, Germany) with al
Oxford Instruments 9.4-T vertical wide-bore magnet (Oxford
D’ = EDE/, [14d] UK) with a Bruker TXI 5-mm,~500 mT mi* x-, y-, andz-axis
gradient probe. The sample temperature was controlled at 2
In words, the product of the Euler matrix, that of the gradK. PGSE experiments were conducted as described previou:
ent-system diffusion tensor (determined experimentally), aft-3). The pulse-sequence parameters were: duration of fiel
the transpose of the Euler matrix, yield the diffusion teri3br gradient pulsesj = 2 ms; time interval between field-gradient
in the natural coordinate system of the sample. The latter tenpoises,A = 20 ms; 90° RF pulse, 12-13s; total spin-echo
is a diagonal one. The coefficients Bfare determined by the time, TE = 40 ms; 8 transients per spectrum; maximun
numerical diagonalization of the experimental diffusion tensdield-gradient,g;, .. = 0.5 T m*. Routinely 16 spectra were
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gradients were calibrated using the known diffusion coefficient
of water in an isotropic and unbounded spat®).(

Data analysis. In each spectrum, the integral of the water
resonance was measured using the standard Bruker software
(uxnmp where it was normalized with respect to the signal
intensity in the first spectrum. Unless the first spectrum was
acquired with a small nonzero gradient its phase was substan-
tially different from that of the rest in the series. Therefore, a
value of 1 G cm" was used for the field-gradient magnitude in v *
the first spectrum of each series. The subsequent analysis in a 3.0 M
Mathematicaprogram followed that described under Theory 0E+00 25409 4E+09 6E+09
and in the Appendix. P28 (A- §3)(m 2 s)

acquired with a sequential increase in the valug.ofhe three 0.0 \‘
!

-2.0 4

Ln{normalised signal)

RESULTS

Erythrocytes in Isotonic Medium

Figure 2A shows a set dH PGSE NMR signal intensities
obtained from the water in normal-volume human erythrocytes
and their extracellular medium. The sample was subjected to a
range of values of the following gradients;, 9y, 9., Oxy, Oxz
0,,, andg,,,. The composite gradients such@gs were gener
ated from the appropriate combination of the basis gradients.
The latter were adjusted so that the resultant gradient had the
same magnitude as those used in experiments where the basis . :
gradients were applied singly. Fine adjustments to scaling OE+00 SE+08 1E+09
factors for the gradient magnitudes were made during data Pel& (A- 83)(m 2s)
analysis; these were based on the measurement of the apparent
diffusion coefficient of water in all directions and the assump- FIG. 2. Signal intensity from water, as a function of the magnitude anc

tion that it should have the same value in all directiolﬁ).( direction of the magnetlc' field-gradient pulsesiiNMR PGSE experiments
conducted on a suspension of normal-volume human erythrocytes, at a hemn

The bottom 16 pointsY) in Fig. 2A were obtained with the ocrit of 0.65 and temperature of 25°C. The graphs are in the format propos
field-gradient applied along thedirection (direction ofBy). by Stejskal and TannerL®) and the independent (abscissal) variable is ac
The upper set was obtained with the gradient inxttirection cordingly referred to as the Stejskal-Tanner parameter. Seven data sets w
(#), and these were superimposed upon by those acquired V@ﬁﬁpireq for each of 1_6 different values of the gradient pulses. A. The gradier
the field gradient in thg-direction and in thex,y-direction (). nd their corresponding data sets are denoted by the synghol; g,, #; gz,

. . . i d Y. Oy <) Oxr @; 0y, @; Oy, ®. Note that the data fag, were superimposed
The next most rapid signal attenuation was obtained with thg ose ofg,, and similarly forg,, andg,.. B. A replot of the data in A, but
0.~ andg,,-data. Hence, diffusion in the direction gf was taking only the first eight points and fitting those with a straight line: the
significantly more rapid than in all other directions. symbols are as for A. Each fitted line is clearly associated with a particular da

It is also readily seen in Fig. 2A that each data set was it
well described by a single straight line. However, a straight line
fitted each data set moderately well over the first eight points
of each set and even better for the second to the eighth poiftgpertonic saline solution2( 17). The qualitative features of
the outcome of fitting this truncated sets of the points is showe Stejskal-Tanner plots were the same as in Fig. 2A but t
in Fig. 2B. The four straight lines had significantly different (€xtent of signal attenuation was greater for each of the sev
test) s|opes in the OrdgE_data> Superimposegxz_gyz_data> dlﬁere.r.]t fleld-gradlent dlreCtIOI_’IS (Flg 3) ThlS effect was
gxyz_data > Superimpose(gx_gy_gxy_data_ The S|opes of the quantlfled when the data were fitted by Stralght lines to the 2r
latter three lines were not significantly different and the synto the 8th or the 9th to the 16th points in each set.

bols used for the,- andg,-data in Fig. 2B were superimposed. When human erythrocytes are placed in hypotonic salir
they take on an almost spherical shape while retaining tw

diametrically opposed indentationg, (L7). Not withstanding

the more spherical shape of the cells, the two regression lin
Experiments, the same as those used for Fig. 2, were carrititl revealed a greater apparent diffusion coefficient for th

out on cells that were flattened by the osmotic effect of adirection compared with all others. To avoid overcrowding

Ln(normalised signal)

Erythrocytes in Hyper- and Hypotonic Media
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0.0 % volume erythrocytes had a difference between the average
ihﬁ their values ofD;; andD,, and the value oD,; of 3.25 X
107 m® s; but for the swollen and flattened cells it was
2.53x 10" and 3.14x 10 m’ s, respectively. The largest
difference was with the normal-volume cells. On the othe
hand, when the last eight point were analyzed (Table 2) tt
corresponding differences were substantially less, while tt
largest difference was with the flattened cells. The difference

were 1.7x 107" 1.2 X 107% and 1.9% 10 m* s,
respectively.

v Furthermore, Fig. 3 provides graphical representation of tf
: : 4 fact that the apparent diffusion coefficient in tke and z-
OE-+00 2E+09 4E+09 6E+09 directions was greatest for the cells in the hypertonic mediur
P2e2& (A- §3)(m 2s) followed by the normovolumic cells, and then the swoller

cells.
FIG. 3. Stejskal-Tanner plot of théH NMR PGSE signal intensity
obtained from human erythrocytes of three different average volumes and with
the pulsed-field-gradients applied in theandz-directions only, for a range of

»>O
L 243
<& O
< v
4o 0
a4 O O
4 ¢ PpAR
4 ¢ P

-1.0

-2.0

<>

Ln(normalised signal)
4 o o
® dp o>

-3.0

16 different values. The average volume of the cells, the gradient, and the TABLE 1
symbols used were as follows: swollen cellg, A; swollen cells,g,, A; Results of the Multivariate Linear Regression Analysis of PGSE
normal-volume cellsg,, ¢; normal-volume cellsg,, #; shrunken (flattened) 'H NMR Data from Human Erythrocytes That Were Suspended
cells,g,, V; shrunken cellsg,, V. in Isotonic (154 mM), Hypotonic (121 mM), and Hypertonic (242
mM) Saline Solutions
the graph, the data for only the- and z-directions were Parameter  ~ Estimate ~ ~ SE  Sample
. . (10° X m*s ™) (10° X m°s™) (10° X m°s™) frame
presented in Fig. 3.
Isotonic x? (D1y) 6.88 0.17 6.80
Diffusion Tensor y* (D2) 7.07 0.17 7.16
7’ (Dsy) 10.20 0.17 10.20
The data in Fig. 2A, and the corresponding sets for eryth- 2xy (Dy2) -0.31 0.19
rocytes suspended in hypotonic and hypertonic media, were 2xZ (D) 0.16 0.19
subjected to quantitative diffusion tensor analysis. This was 2yZ(Dos) 0.0009 0.19
. . . H¥poton|c x* (Dy,) 7.99 0.23 8.01
carried out according to the procedure described under Expet- v? (D) 750 023 747
imental by using the program presented in the Appendix. Table 2% (D) 10.27 0.23 10.27
1 contains the results of the analysis of the second to eighth 2xy (D1s) —-0.20 0.26
points in each Stejskal-Tanner plot; it confirmed in a quanti- 2xZ (D) 0.17 0.25
tative way the impression gained from Fig. 2A regarding less 20y 0.24 025
. . . . . . Hypertonic x* (Dy,) 7.35 0.12 7.43
restriction of diffusion in the-direction than all others. For the v? (D) 721 012 711
normal-volume cells the values c[Dll.apd D,, (average, 2% (D) 10.42 0.12 10.43
6.98 X 10 m* s™*) were the same within the experimental 2xy (Dy,) 0.30 0.26
error and the coefficient of variation wa2.5%. The error was 2xZ (D) 0.21 0.26
substantially greater (coefficient of variatierlL. 7%) when the 2yz (D2s) 0.38 0.26

first -pomt was included in the regressm_n, her_lce Its blankmg_Note.The 2nd to the 8th points from a total of 16 were used in the analysi
out in all subsequent analyses (see Discussion). The co&ffis corresponded to the first linear section of the data set (see Fig. 2B). (It
cients of variation for the estimates of the three leadingepeatedly noted, and also in the present data set, that avoidance of using
diagonal terms were less for the first half of a data set than fisit point in the analysis reduced the coefficient of variation (SE) inDthe

the second half; this is consistent with the appearance o]esg'mates from~17 to ~3%, hence its omission here.) The basis functions

. used in the regression of the quadratic form (Eq. [9]) onto the data are tho
greater degree of curvature of the plOtS (FIgS. 2A and 3) fﬁgted in the first column together with the corresponding element of th

larger vales of the StejSkal—Tanner parameter. diffusion tensor (Eq. [3]). The second column contains the estimates of tf
In Table 1 the estimate ., was 10.20+ 1.00X 10 m?  values of the elements; most notable are the first three values that corresp

s, which was more than two standard deviations differefit the diffusion coefficients in the-, y-, and z-directions. The SE column
from the correspondin@n and D,, values. The other ele contains the standard errors of the parameter estimates that is a standard oL

ts of the diffusi t th t t of the Mathematicaunction (see Appendix). The right-hand column contains
ments o e diffusion tensor (the cross-terms) were no Sle elements of the diagonalized matrix and these values correspond to

nificantly different from Zero. o diffusion coefficients in thes-, y-, andz-directions, respectively, in the frame
For the second to eighth data points in each set, the nornmlreference of the sample.
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TABLE 2 the packing density (hematocrit) of the suspension; as such it

Results of the Multivariate Linear Regression Analysis a parameter that is readily under experimental control.
of the Second Set of Eight Points in Each Data Set

Correlation with Cell Diameter

Parameter Estimate SE Sample
(10°xm?s™) (10°Xx m*s™) (10°x m’s?) frame The NMR signal that persisted at the higher values of th
sotonic % (D) 5 62 0.30 5 66 field-gradient would have been that from water that had th
v (DZ) 546 030 541 Smallestapparent diffusion coefficient, namely water inside tt
2% (Ds3) 7927 0.30 772 cells. The second to eighth points, and the last eight points,
2xy (Dy2) -0.18 0.33 each data set were moderately well described by separ:
2xZ(D13) 0.13 0.33 straight lines but the regression-fit was better for the first set.
_ 2yZ(Dos) 0.16 0.33 is worth emphasizing that the subdivision of the points wa
Hypotonic x* (Dy,) 5.60 0.38 5.59 . . . .
V¢ (D) 530 038 509 arbitrary and was based simply on separating the data into t
2% (Ds3) 6.69 0.38 6.70 first and last half of each set.
2xy (Dy2) -0.19 0.42 From previougy-space analysis of erythrocyte suspension
2xZ(D13) 0.17 0.42 (1-3) it is known that for larger values of the field gradients the
20y 0.20 0.42 signal that remains is primarily from the water inside the cells
Hypertonic x* (Dy,) 6.22 0.27 6.19 . . .
V¢ (D) 6.30 027 629 In the previousg-space analysis of red cell suspensions th
2% (Ds3) 8.14 0.27 g17 conclusion regarding alignment of the cells with their disc
2xy (Dy2) —0.04 0.60 planes parallel toB, was based on the consistency of the
2xZ(D13) 0.28 0.59 position of the first diffusion—diffraction minimum with a

scalar distance that was equal to the known main diameter
the human red cell1@).

The area of the membrane of a human erythrocyte does r
change significantly as it shrinks or swell); an increase in

Note.The meaning of each column in the table is the same as for Table

DISCUSSION the volume only comes about by the biconcave disc becomir
more spherical and hence taking a smaller main diamete
Two Major Diffusion Domains Therefore, the values db,; for the cells of different sizes

.should be reflected in the relative magnitude of this paramete

The experimental data in Figs. 2 and 3 showed that diﬁus'?rr]]deed this was the case (see Table 2), Bithbeing (6.69*
of water was less restricted in taedirection than in all others. 0.38) X 10° m? s for the swollen cells with the smallest

The superposition of thg,—g,—0,,-data showed that there Wasmain diameter, (7.27- 0.30) X 10 m’ s* for cells of

)l:(;_glr:;zrred ordering of the cells when projected onto trl]w%rmal volume, and (8.14 0.27)X 10 *m?s * for the cells

The diagonal element @ (Tables 1 and 2) with the Iargestthat were flattened and therefore had the largest diameter.

value,D,;, corresponding to the apparent diffusion coefficierEu
for water that was both inside and outside the cells in the
suspension of normal-volume erythrocytes in thelirec- The fifth columns of Tables 1 and 2 show that after diago
tion, was (10.2+ 1.00) X 10 m? s™%; but this value is nalizing the experimentally determin@lthere was no statis-
substantially less thar2 X 10° m? s™* expected for water tically significant change in the values of the diagonal elemen
in an isotropic unbounded saline solutiod6). This is of the tensor. This implies that the sample frame of referenc
clear evidence that the diffusion of water was impeded in theas aligned with that defined by the magnetic field-gradient
erythrocyte suspensions. Furthermore, the general nonconforfhe Appendix shows one example of a set of angtes(
mity of the data sets shown in Fig. 2A with straight line91°, ¢ = 30°, andy = 1°) that were required to align the
implies that the water was undergoing restricted and/or olaboratory (gradient) frame of reference with the sample fram
structed diffusion in at least two spatial domains. This iShis set relates to the second to eighth points from the isotor
consistent with the water in the cell suspensions occupyisgmple referred to in Table 1. Thathematicafunction
both the intra- and extracellular spaces. Because water &kgularValues diagonalizes a matrix and then places the e
changes rapidly across the cell membranes there is a blurringragnts of the diagonal matrix in echelon form, from left to right
the effects of restriction of motion in one compartment by thatown the leading diagonal. Thus the elemBnj in the exper

in the other. The water outside the cells moved with a largenental tensor was moved to the positiorinf; in the diagonal
apparent diffusion coefficient than that inside, which was reaatrix. Since the original experimental tensor was almo:
stricted by the cell membrane$)( Nevertheless, the extracel-diagonal the value o would be expected to be near 90°, as
lular diffusion is obstructed by the outside of the cell memwas the case. The fact thatwas not 0° or 90° was also evident
branes and so the apparent diffusion coefficient is dependentath the other analyses, and this is consistent with the hig

ler Angles
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level of statistical noise in the off-diagonal terms of the expewere not flowing. The effect of flow on the alignment of
imental tensor. In other words, the similarity of the values @frythrocytesin vivo is imperfectly understood; but it is con-
the elements on the leading diagonal in the experimental tenseivable that the microperfusion of tissues could be altered .
with those of its diagonalized form (Tables 1 and 2) showedl result of the different orientations of the perfusing blooc
that, within experimental error, the cells were aligned withessels and the alignment of the erythrocytes in thBirSince

their disc planes parallel to the direction g@fandB,. red cells become distorted when passing through capillarie
such effects would presumably only be manifest in the large
arterioles and venules that feed and drain the capillary bec

A final comment on the statistical analysis is warranted. THespectively.
output from theMathematicgprogram (see Appendix) contains The physical basis of the alignment of the discocyteBjn
valuable information in addition to the values of the elementis primarily the diamagnetic anisotropy of the phospholipids i
of the diffusion tensor. These items include the standard errdii® membranes, with some opposing contribution from th
(SE) of the parameter estimatésstatistic, andP value. The differences between the bulk magnetic susceptibility across tl
latter were minute €0.01) in all cases for the diagonal elecell membraneg, 20.
ments, indicating a high level of statistical significance of the A systematic approach to estimating the diffusion tensc
estimated values and their consistency with the fitted quadratiom PGSE data was developed using functions available
form (Eq. [9]). A large change was noticed in the SEs estidathematicaThis provided a compact and rapid analytical
mated in the regression analysis of the first eight points, whettategy for evaluating the Euler rotation matrix and defin
the first point in each set was eliminated. This effect was tracgdy the relationship between the laboratory and samp
to the fact that the first spectrum, acquired with a low value @artesian-reference frames. While quantitative determin:
field-gradient, was usually not of consistent intensity comparg@ns of the values of the elements of the diffusion tensor at
with the others in the series. Since the points lay at thfsnerally not sought in MRI, these values are required for
extremes (beginning) of the series of fitted points it wasrecise description of the rate of solvent and solute diffusio
deemed justified to eliminate them from the analysis. in biophysical studies of tissues and cells. Thus a suspensi
of carbonmonoxygenated human erythrocytes may serve
a well-characterized diffusion-tensor phantom for cali

The clinical significance of the alignment of erythrocytes ibrating an MRI instrument for quantitative biophysical stud.
a magnetic field, as demonstrated here, is unknown as the cells

Statistics

Conclusions

APPENDIX

The Mathematicaprogram was used with PGSE NMR data to calculate: (1) the diffusion tensor in the laboratory fram
reference; (2) the diagonalized form of the tensor and hence the tensor in the frame of reference of the sample; and (3)
rotation matrix that specifies the frame of reference of the sample relative to the laboratory frame. The Input commands ar
in boldface and the Input comments and Output statements are in plain text. The input and output values/numbers are f
actual experiment whose data are given in Fig. 2. The fit was to the 2nd to the 8th points in each set of 16 4-tuples. The b
off of the primary data was done with the bracket—asterisk comment declarer.

(*Diffusion tensor calculation from PGSE data*)

In[1]:=

Needs[“Statistics’'LinearRegression™]

gam = 2.67 x 10% (*v radians S', magnetogyric ratio of protons*)

lildel = 0.002; (*8 seconds, duration of field-gradient pulse*)

bigdel = 0.02; (*A seconds, time interval between field-gradient pulses*®)
stejTan = gam(R2 lildel2 (bigdel — lildel/3); (*Stejskal-Tanner variable*)

(*data consist of the 4-tuplesdX, gy, gz signal} where the signal has been normalizeduimmr,with respect to that in the
first spectrum for which the gradient has the least value*)

data =

{(*{0.01, 0.0, 0.0, 1.0},*f*1st 4-tuple, firstgx value,gy, gz = 0; signal= 1.0%)
(*blanking off the 1st 4-tuple improves quality of fit*)

{0.043, 0.0, 0.0, 0.9780},
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* (*blanking off the 9th to the 16th 4-tuple to fit first linear section*)

{0.5, 0.0, 0.0, 0.09408},*[*16th 4-tuple, lastgx value,gy, gz = 0%)

(*{0.0, 0.01, 0.0, 1.0},**1st 4-tuple, firstgy value,gx, gz = 0; signal= 1.0%)
(*blanking off the 1st 4-tuple improves quality of fit*)
{0.0, 0.043, 0.0, 0.9749},

(*blanking off the 9th to the 16th 4-tuple to fit first linear section*)

{0.0, 0.5.0, 0.0, 0.09605), H*16th 4-tuple, lasgy value,gx, gz = 0%)

. (*16 X 4-tuples, onlygz applied*)

. (*16 X 4-tuples,gx andgy applied*)

. (*16 X 4-tuples,gx andgz applied*)

. (*16 X 4-tuples,gy andgz applied*)

. (*16 X 4-tuples,gx, gy, andgz applied*)

h

(*transform the data so that the 4th element in the 4-tuple is divided by the Stejskal-Tanner parameter that includes the m:
gradient squared (according to Eq. [8] in the text), and the field-gradient elements are normalized by dividing by the ler
the gradient vector, namely the square root of the sum of the squares of the magnitudes of the three constituent basis gr:

trans[x_,y_]:= —Log[x]/(stejTan*y"2)

transdat = Partition[Flatten[Map[{{Part[#,1],Part[#,2],Part[#,3]}/
(Sqart[Part[#,1]"2 +Part[#,2]"2 +Part[#,3]"2) trans[Part[#,4],
Sqrt[Part[#,1]"2 +Part[#,2]"2 +Part[#,3]"2] ]}&,data]], 4];

(*the quadratic form of Eqg. [9], described by the gradient basis functions, is fitted onto the data*)

fitr = Resgress[transdata, {k2, y(2, 212, 2 xy, 2x 2,2y z}, {X, Y, z},
IncludeConstant—False]

Out[2]=
{ParameterTable>

Estimate SE TStat PValue
x? 6.89%x 107 % 1.72x 10" 40.0093 0.
y2 7.07x 10 1.72x 10" 41.0547 0.
7’ 1.02x 10°° 1.72x 10 59.4686 0. s
2Xy —-3.12x 10" 1.87x 107 —1.65917 0.104358
2X2Z 1.59%x 10 1.86x 10 0.858712 0.395261
2yz -8.82x 10" 1.86x 10 % —0.0047507 0.996231

RSquared— 0.982403, AdjustedRSquareet 0.980291,
EstimatedVariance~> 7.68077x 10 %, ANOVATable —

DF SumOfSq MeanSq FRatio PValue
Model 6 3.24x 1077 5.39%x 10°*® 2498.09 0.
Error 43 9.28x 107® 2.16x 10 }

U Total 49 3.25x 107"
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(*repeat fit and extract diffusion tensor from Output Table*)
In[3]=

fitr = Regress[transdata, {x"2, y"2,z"22 Xy, 2x2z,2Yy z},{X, Y, z},

IncludeConstant—False, RegressionReport>
{ParameterConfidenceRegion}];

resf = ParameterConfidenceRegion/ fitr[[1]];

dt = resf[[1]];

diffTens = {{dt[[1]], 0.5 dt[[4]], 0.5 dt[[5]]},
{0.5 dt[[4]], dt[[2]], 0.5 dt[[6]]},
{0.5 dt[[5]], 0.5 dt[[6]], dt[[3]]}};

{u, md, v} = SingularValues[diffTens]

MatrixForm[DiagonalMatrix[md]]

Out[4]=

{{{0.024, —0.0013, 0.100}, £0.498, 0.867, 0.013}, {0.867, 0.498;0.020}}, {1.02 X 10°°, 7.16 X 107, 6.79 X 109},
{0.024, —0.0013, 0.100}, £0.498, 0.867, 0.013}, {0.867, 0.498;0.020}}}

Out[5]=
1.02041x 107° 0 0
0 7.15563%x 107 0
0 0 6.79495x 10°1°
In[6]=

(*the Euler matrix is as follows:

rotMat:={{Cos[fi]Cos[th]Cos[psi]- Sin[fi]Sin[psi],Sin[fijCos[th]Cos[psi}

Cos[fi]Sin[psi],—~Sin[th]Cos|psi]},{—Cos|fi]Cos[th]Sin[psi}-
Sin[fi]Cos[psi],—Sin[fijCos[th]Sin[psi} Cos|[fi|Cos[psi],
Sin[th]Sin[psi]},{Sin[th]Cos]fi],Sin[th]Sin][fi], Cos[th]}}.

To determine fi, theta, and psi, equate elements (3,3), (3,2), and (2,3)
with the corresponding terms of the Euler matrix and solve for each angle*)

In[7]=

theta = ArcCos[ut[[3,3]]]*180/Pi//N

phi = ArcSin[ut[[3,2]]/Sin[ArcCos[ ut[[3,3]] ] ]*180/Pi//N
psi = ArcSin[ut[[2,3]])/Sin[ArcCos[ ut[[3,3]] ] ]*180/Pi//N

Out[8]= 91.1586
Out[9]= 29.8692
Out[10]= 0.753636
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